Open Access
Issue |
Silva Lusitana
Volume 31, Number 1, 2023
|
|
---|---|---|
Page(s) | 1 - 29 | |
DOI | https://doi.org/10.1051/silu/20233101001 | |
Published online | 26 July 2023 |
- Acácio, V., Holmgren, M., Rego, F., Moreira, F., Mohren, G.M.J., 2009. Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforestry Systems 76: 389–400. [CrossRef] [Google Scholar]
- Aguado, P.L., Curt, M.D., Pereira, H., Fernández, J., 2017. The influence of season on carbon allocation to suberin and other stem components of cork oak saplings. Tree Physiology 37: 165–172. [Google Scholar]
- Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration - guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome. [Google Scholar]
- Augspurger, C.K., 2008. Early spring leaf out enhances growth and survival of saplings in a temperate deciduous forest. Oecologia 156: 281–286. [CrossRef] [Google Scholar]
- Augspurger, C.K., Bartlett, E., 2003. Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiology 23: 517–525. [CrossRef] [Google Scholar]
- Barthélémy, D., Caraglio, Y., 2007. Plant Architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany 99: 375–407. [CrossRef] [Google Scholar]
- Caldeira, M.C., Ibãñez, I., Nogueira, C., Bugalho, M.N., Lecomte, X., Moreira, A., Pereira, J.S., 2014. Direct and indirect effects of tree canopy facilitation in the recruitment of Mediterranean oaks. Journal of Applied Ecology 51: 349–358. [CrossRef] [Google Scholar]
- Camilo-Alves, C.S.P., Clara, M.I.E., Ribeiro, N.M.C.A., 2013. Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research 132: 411–432. [CrossRef] [Google Scholar]
- Cannell, M.G.R., Smith, R.I., 1983. Thermal time, chill days and prediction of budburst in Picea sitchencis. Journal of Applied Ecology 20: 951–963. [CrossRef] [Google Scholar]
- Caritat, A., Molinas, M., Oliva, M., 1988. Crecimiento longitudinal del alcornoque: segmentos y hojas. Scientia Gerundensis 14: 93–103. [Google Scholar]
- Caritat, A., Molinas, M., Oliva, M., 1992. El crecimiento radial del alcornoque en cinco parcelas de alcornocal de Girona. Scientia Gerundensis 18: 73–83. [Google Scholar]
- Carnicer, J., Coll, M., Ninyerolac, M., Pons, X., Sánchez, G., Peñuelas, J., 2011. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences 108(4): 1474–1478. [CrossRef] [Google Scholar]
- Castro-Díez, P., Montserrat-Martí, G., Cornelissen, J.H.C., 2003. Trade-offs between phenology, relative growth rate, life form ad seed mass among 22 Mediterranean woody species. Plant Ecology 166: 117–129. [CrossRef] [Google Scholar]
- Cerasoli, S., Maillard, P., Scartazza A., Brugnoli E., Chaves, M.M., Pereira, J.S., 2004. Carbon and nitrogen winter storage and remobilisation during seasonal flush growth in two-year-old cork oak (Quercus suber L.) saplings. Annals of Forest Science 61: 721–729. [CrossRef] [EDP Sciences] [Google Scholar]
- Costa E Silva, F., Correia, A.C., Piayda, A., Dubbert, M., Rebmann, C., Cuntz, M., Werner, C., David, J.S., Pereira, J.S. 2015. Effects of an extremely dry winter on net ecosystem carbon exchange and tree phenology at a cork oak woodland. Agricultural and Forest Meteorology 204: 48–57. [CrossRef] [Google Scholar]
- David, T.S., Pinto, C.A., Nadezhdina, N., Kurz-Besson, C., Henriques, M.O., Quilhó, T., Čermák, J., Chaves, M.M., Pereira, J.S., David, J.S., 2013. Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. Forest Ecology and Management 307: 136–146. [CrossRef] [Google Scholar]
- Dickson, R.E., 1989. Carbon and nitrogen allocation in trees. Annals of Forest Science 46(Suppl.): 631s–647s. [CrossRef] [EDP Sciences] [Google Scholar]
- Eriksson G., Varela M.C., Lumaret R., Gil L., 2017. Genetic conservation and management of Quercus suber. Technical Bulletin. European Forest Genetic Resources Programme (EUFORGEN). Bioversity International, Rome, Italy. 43 pp. [Google Scholar]
- Fernández, M., Alejano, R., Domínguez, L., Tapias, R., 2008. Temperature controls cold hardening more effectively than photoperiod in four Mediterranean broadleaf evergreen species. Tree and Forestry Science and Biotechnology 2: 43–49. [Google Scholar]
- Fialho, C., Lopes, F., Pereira, H., 2001. The effect of cork removal on the radial growth and phenology of young cork oak trees. Forest Ecology and Management 141: 251–258. [CrossRef] [Google Scholar]
- García-Mozo, H., Galán, C., Aira, M.J., Díaz de la Guardia, C., Fernández, D., Gutierrez, A.M., Rodriguez, F.J., Trigo, M.M., Dominguez-Vilches, E., 2002. Modelling start of oak pollen season in different climatic zones in Spain. Agricultural and Forest Meteorology 110: 247–257. [CrossRef] [Google Scholar]
- García-Mozo, H., Galán, C., Jato, V., Belmonte, J., Díaz de la Guardia, C., Fernández, D., Gutiérrez, M., Aira, M.J., Roure, J.M., Ruiz, L., Trigo, M.M., Domínguez-Vilches, E., 2006. Quercus pollen season dynamics in the Iberian Peninsula: Response to meteorological parameters and possible consequences of climate change. Annals of Agricultural and Environmental Medicine 13: 209–224. [Google Scholar]
- Gilson, A., Barthes, L., Delpierre, N., Dufrene, E., Fresneau, C., Bazot, S., 2014. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence. Tree Physiology 34: 716–729. [CrossRef] [Google Scholar]
- Gömöry, D., Paule, L., 2011. Trade-off between height growth and spring flushing in common beech (Fagus sylvatica L.). Annals of Forest Science 68(5): 975–984. [CrossRef] [Google Scholar]
- Hsiao, T.C., 1973. Plant responses to water stress. Annual Review of Plant Physiology 24: 519–570. [CrossRef] [Google Scholar]
- Hunter, A.F., Lechowicz, M.J., 1992. Predicting the timing of budburst in temperate trees. Journal of Applied Ecology 29: 597–604. [CrossRef] [Google Scholar]
- IPCC, 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. 3056 pp. [Google Scholar]
- IUSS WORKING GROUP WRB. 2006. World reference base for soil resources 2006 2nd edition. World Soil Resources Reports No. 103. FAO: Rome. 144 PP. [Google Scholar]
- Jackson, S.D., 2009. Plant responses to photoperiod. New Phytologist 181(3): 517–31. [CrossRef] [Google Scholar]
- Jato, V., Rodríguez-Rajo, F.J., Méndez, J., Aira, M.J., 2002. Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. International Journal of Biometeorology 46: 176–184. [CrossRef] [Google Scholar]
- Körner, C., Basler D., 2010. Phenology under global warming. Science 327: 1461–1462. [CrossRef] [Google Scholar]
- Kozlowski, T. T., 1992. Carbohydrate sources and sinks in woody plants. The Botanical Review 58: 109–224. [Google Scholar]
- Kummerow, J., 1981. Structure of roots and root systems. In: Di Castri, F., Goodall, D. W. and Specht, R. L. (Eds). Mediterranean-type shrublands. Ecosystems of the world 11. Elsevier. Amsterdam. pp. 269–288. [Google Scholar]
- Lefèvre, F., Boivin, T., Bontemps, A., Coubert, F., Davi, H., Durand-Gillmann, M., et al, 2014. Considering evolutionary processes in adaptive forestry. Annals of Forest Science 71: 723–739. [CrossRef] [Google Scholar]
- Limousin, J.-M., Rambal, S., Ourcival, J.-M., Rodríguez-Calcerrada, J., Pérez-Ramos, I.M., Rodríguez-Cortina, R., Mission, L., Joffre, R., 2012. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 169:565–577. [CrossRef] [Google Scholar]
- Lobo do Vale, R., Besson, C.K., Caldeira, M.C., Chaves, M.M., Pereira, J.S., 2019. Drought reduces tree growing season length but increases nitrogen resorption efficiency in a Mediterranean ecosystem. Biogeosciences 16: 1265–1279. [CrossRef] [Google Scholar]
- Malyshev, A.V., Van der Maaten, E., Garthen, A., Maß, D., Schwabe M., Kreyling, J., 2022. Inter-individual budburst variation in Fagus sylvatica is driven by warming rate. Frontiers in Plant Science 13: 853521. [CrossRef] [Google Scholar]
- Mannai, Y., Ezzine, O., Hausmann, A., Nouira, S., Ben Jamâa, M.L., 2017. Budburst phenology and host use by Operophtera brumata (Linnaeus, 1758) (Lepidoptera: Geometridae) in three Mediterranean oak species. Annals of Forest Science 74: 3. [CrossRef] [Google Scholar]
- Marchin, R.M., Salk, C.F., Hoffmann, W.A., Dunn, R.R., 2015. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Global Change Biology 21(8): 3138–3151. [CrossRef] [Google Scholar]
- Marchand, L.J., Dox, I., Gričr, J., Prislan, P., Leys, S., van den Bulcke, J., et al., 2020. Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agricultural and Forest Meteorology 290: 108031. [CrossRef] [Google Scholar]
- Maroco, J., Rodrigues, M.L., Lopes, C., Chaves, M.M., 2002. Limitations to leaf photosynthesis in field-grown grapevine under drought - metabolic and modelling approaches. Functional Plant Biology 29: 451–459. [CrossRef] [Google Scholar]
- Mediavilla, S., Escudero, A., 2009. Relative growth rate of leaf biomass and leaf nitrogen content in several Mediterranean species. Plant Ecology 168: 321–332. [Google Scholar]
- Meier, M., Vitasse, Y., Burgmann, H., Bigler, C., 2021. Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agricultural and Forest Meteorology 307: 108485. [CrossRef] [Google Scholar]
- Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R., et al. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969–1976. [CrossRef] [Google Scholar]
- Menzel, A., Yuan, Y., Matiu, M., Sparks, T., Scheifinger, H., Gehrig, R., Estrella, N., 2020. Climate change fingerprints in recent European plant phenology. Global Change Biology 26: 2599–2612. [CrossRef] [Google Scholar]
- Molinas, M., Caritat, A., 1989. Aportaciones al estudio del crecimiento longitudinal del alcornoque. In: Bellot J. (Ed.). Jornadas sobre las bases ecológicas para la gestión en ecosistemas terrestres. Zaragoza: CIHEAM, 1989. p. 69–72 (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 3). [Google Scholar]
- Molinas, M., Oliva, M., Caritat, A., 1992. Estudio comparativo de la elongación apical y los parámetros foliares en seis parcelas de alcornocal de Girona. Scientia Gerundensis 18: 61–71. [Google Scholar]
- Morin, X., Roy, J., Sonie, L., Chuine, I., 2010. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist 186(4): 900–910. [CrossRef] [Google Scholar]
- Natividade, J.V., 1939. O descortiçamento. Boletim da Junta Nacional da Cortiça nº 7. Direcção Geral dos Serviços Florestais e Aqüicolas, Lisboa, Portugal. [Google Scholar]
- Natividade, J.V., 1941. O repovoamento dos montados alentejanos e a criação de novos sobreirais. Separata do Boletim da Junta Nacional da Cortiça nº 31 e 32. Direcção Geral dos Serviços Florestais e Aqüicolas, Lisboa, Portugal. [Google Scholar]
- Natividade, J.V., 1950. Subericultura. Direcção-Geral dos Serviços Florestais e Aquícolas: Lisboa. 387 pp. [Google Scholar]
- Oliveira, G., Correia, O., Martins-Loução, M.A., Catarino, F.M., 1994. Phenological and growth patterns of the Mediterranean oak Quercus suber L., Trees 9: 41–46. [CrossRef] [Google Scholar]
- Peñuelas, J., Filella, I., 2001. Phenology responses to a warming world. Science 294: 793–795. [CrossRef] [Google Scholar]
- Peñuelas, J., Rutishauser, T., Filella, I., 2009. Phenology feedbacks on climate change. Science 324: 887–888. [CrossRef] [Google Scholar]
- Pereira, J.S., Beyschlag, G., Lange, O.L., Beyschlag, W., Tenhunen, J.D., 1987. Comparative phenology of four Mediterranean shrub species growing in Portugal. In: Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C. (Eds) Plant Response to Stress. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. pp 503–513. [Google Scholar]
- Piao, S.L., Liu, Q., Chen, A.P., Janssens, I.A., Fu, Y.S., DAI, J.H., LIU, L.L., Lian, X., Shen, M.G., Zhu, X.L., 2019. Plant phenology and global climate change: Current progresses and challenges. Global Change Biology 25: 1922–1940. [CrossRef] [Google Scholar]
- Pinto, C.A., Henriques, M.O., Figueiredo, J.P., David, J.S., Abreu, F.G., Pereira, J.S., Correia, I., David, T.S., 2011. Phenology and growth dynamics in Mediterranean evergreen oaks: effects of environmental conditions and water relations. Forest Ecology and Management 262(3): 500–508. [CrossRef] [Google Scholar]
- Ramírez-Valiente, J.A., Valladares, F., Delgado, A., Nicotra, A.B., Aranda, I., 2015. Understanding the importance of intrapopulation functional variability and phenotypic plasticity in Quercus suber. Tree Genetics & Genomes 11: 35. [Google Scholar]
- Sampaio, T., Branco, M., Guichou, E., Petit, R.J., Pereira, J.S., Varela, M.C., Almeida, M.H., 2016. Does the geography of cork oak origin influence budburst and leaf pest damage? Forest Ecology and Management 373: 33–43. [CrossRef] [Google Scholar]
- Sampaio, T., Gonçalves, E., Faria, C., Almeira, M.H., 2021. Genetic variation among and within Quercus suber L. populations in survival, growth, vigor and plant architecture traits. Forest Ecology and Management 483: 118715. [CrossRef] [Google Scholar]
- Sanz-Pérez, V., Castro-Díez, P., Valladares, F., 2009. Differential and interactive effects of temperature and photoperiod on budburst and carbon reserves in two co-occurring Mediterranean oaks. Plant Biology 11: 142–151. [CrossRef] [Google Scholar]
- Seiwa, K., 1998. Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey phenologies in deciduous broad-leaved forests. Journal of Ecology 86: 219–228. [CrossRef] [Google Scholar]
- Seiwa, K., 1999. Ontogenetic changes in leaf phenology of Ulmus davidiana var. japonica, a deciduous broad-leaved tree. Tree Physiology 19(12): 793–797. [CrossRef] [Google Scholar]
- Serrano, M.S., Pérez, F.J., Gómez-Aparicio, L., 2021. Disentangling the interactive effects of climate change and Phytophthora cinnamomi on coexisting Mediterranean tree species. Agricultural and Forest Meteorology 298-299: 108295. [CrossRef] [Google Scholar]
- Uscola, M., Villar-Salvador, P., Gross, P., Maillard, P., 2015. Fast growth involves high dependence on stored resources in seedlings of Mediterranean evergreen trees. Annals of Botany 115: 1001–1013. [CrossRef] [Google Scholar]
- Varela, M.C., Brás, R., Barros, I.R., Oliveira, P., Meierrose, C., 2008. Opportunity for hybridization between two oak species in mixed stands as monitored by the timing and intensity of pollen production. Forest Ecology and Management 256: 1546–1551. [CrossRef] [Google Scholar]
- Vitasse, Y., 2013. Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytologist 198: 149–155. [CrossRef] [Google Scholar]
- Vitasse, Y., Baumgarten, F., Zohner, C.M., Kaewthongrach, R., Fu, Y.H., Walde, M.G., Moser, B., 2021. Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. The New Phytologist, 232(2): 537–550. [CrossRef] [Google Scholar]
- Wielgolaski, F.E., 2001. Phenological modifications in plants by various edaphic factors. International Journal of Biometeorology 45: 196–202. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.