Open Access
Issue
Silva Lusitana
Volume 30, Number 2, 2022
Page(s) 107 - 131
DOI https://doi.org/10.1051/silu/20223002107
Published online 17 May 2023
  • Alberto, F.J., Aitken, S., Alía, R., González-Martínez, S., Hänninen, H., Kremer, A., Lefèvre, F., Lenormand, T., Yeaman, S., Whetten, R., Savolainen, O., 2013. Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology 19(6): 1645–1661. doi: 10.1111/gcb.12181. [CrossRef] [Google Scholar]
  • Alía, R., Martin, S., 2003. EUFORGEN Technical Guidelines for genetic conservation and use for Maritime pine Pinus pinaster. p. 6. [Google Scholar]
  • Alía, R., Chambel, R., Notivol, E., Climent, J., González-Martínez, S.C., 2014. Environment-dependent microevolution in a Mediterranean pine Pinus pinaster Aiton. BMC Evol Biol 14. doi: 10.1186/s12862-014-0200-5. [Google Scholar]
  • Almeida, A.F., Capelo, J., Mesquita, S., 2002. Mata Nacional de Leiria: Indicadores Fitoecológicos. Silva Lusitana 10; 195–200. Available at: http://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S0870-63522002000200005&nrm=iso. [Google Scholar]
  • Alvarez, R., Valbuena, L., Calvo, L., 2007. Effect of high temperatures on seed germination and seedling survival in three pine species Pinus pinaster, P. sylvestris and P. nigra. Int J Wildland Fire 16(1): 63–70. doi: 10.1071/WF06001. [CrossRef] [Google Scholar]
  • Amaral, J., Pinto, G., Flores-Pacheco, J.A., Díez-Casero, J.J., Cerqueira, A., Monteiro, P., Gómez-Cadenas, A., Alves, A., Martín-García, J., 2019. Effect of Trichoderma viride pre-inoculation in pine species with different levels of susceptibility to Fusarium circinatum: physiological and hormonal responses. Plant Pathol 68(9): 1645–1653. doi: 10.1111/ppa.13080. [Google Scholar]
  • Barros, V.R., Field, C.B., Dokken, D.J., 2014. Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. doi: 10.1017/CBO9781107415386. [Google Scholar]
  • Calvo, L., Hernández, V., Valbuena, L., Taboada, A., 2016. Provenance and seed mass determine seed tolerance to high temperatures associated to forest fires in Pinus pinaster. Ann For Sci 73: 381–391. doi: 10.1007/s13595-015-0527-0. [CrossRef] [Google Scholar]
  • Castro, J., 2006. Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats. Ann Bot-London 98(6):1233–1240. doi: 10.1093/aob/mcl208. [CrossRef] [Google Scholar]
  • Cendán, C., Sampedro, L., ZAS, R., 2013. The maternal environment determines the timing of germination in Pinus pinaster. Environ Expe Bot 94: 66–72. doi: 10.1016/j.envexpbot.2011.11.022. [CrossRef] [Google Scholar]
  • Chambel, M.R., Climent, J., Alía, R., 2007. Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann For Sci 64: 87–97. doi: 10.1051/forest:2006092. [CrossRef] [EDP Sciences] [Google Scholar]
  • Charco, J., Venturas, M., Gil, L., Nanos, N., 2017. Effective seed dispersal and fecundity variation in a small and marginal population of Pinus pinaster ait. growing in a harsh environment: Implications for conservation of forest genetic resources. Forests 8(9). doi: 10.3390/f8090312. [CrossRef] [Google Scholar]
  • Correia, I., Santos, L., Faria, C., Nóbrega, C., Almeida, H., David, T., 2014. Cone to seedling-variation between Pinus pinaster provenances from contrasting altitudes. For Sci 60(4): 724–732. doi: 10.5849/forsci.12-044. [CrossRef] [Google Scholar]
  • De La Mata, R., Merlo, E., Zas, R., 2014. Among-population variation and plasticity to drought of atlantic, mediterranean, and interprovenance hybrid populations of maritime pine. Tree Genetics and Genomes 10(5): 1191–1203. doi: 10.1007/s11295-014-0753-x. [Google Scholar]
  • Escudero, A., Núñez, Y., Pérez-García, F., 2000. Is fire a selective force of seed size in pine species? Acta Oecol 21(4/5): 245–256. doi: 10.1016/S1146-609X0001083-3. [CrossRef] [Google Scholar]
  • Escudero, A., Pérez-García, F., Luzuriaga, A.L., 2002. Effects of light, temperature and population variability on the germination of seven Spanish pines. Seed Sci Res 12(4): 261–271. doi: 10.1079/SSR2002116. [Google Scholar]
  • Fabião, A., Fabião, A., Carneiro, M., Pereira, F., Cancela, J.H., Pimentel, F., 2006. Rehabilitation of woody riparian vegetation in the margins of the Linhos lagoon, at Urso National Forest. Revista de Ciências Agrárias 29: 90–101. [Google Scholar]
  • Feinard-Duranceau, M., Berthier, A., Vincent-Barbaroux, C., Marin, S., Lario, F.J., Rozenberg, P., 2018. Plastic response of four maritime pine Pinus pinaster Aiton families to controlled soil water deficit. Ann For Sci 75(2). doi: 10.1007/s13595-018-0719-5. [CrossRef] [Google Scholar]
  • Fernandes, P., Máguas, C., Correia, O., 2017. Combined effects of climate, habitat, and disturbance on seedling establishment of Pinus pinaster and Eucalyptus globulus. Plant Ecol 218(5): 501–515. doi: 10.1007/s11258-017-0706-1. [Google Scholar]
  • Fernández-García, V., Fulé, P.Z., Marcos, E., Calvo, L., 2019. The role of fire frequency and severity on the regeneration of Mediterranean serotinous pines under different environmental conditions. Forest Ecol Manag 444: 59–68. doi: 10.1016/j.foreco.2019.04.040. [CrossRef] [Google Scholar]
  • Freire, J., Tavares, M., Campos, J., 2003. Ritmos de Crescimento das Espécies Pinus pinaster, Acacia melanoxylon e Acacia dealbata nas Dunas do Litoral Norte e Centro. Silva Lusitana 11: 67–76. Available at: http://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S0870-63522003000100005&nrm=iso. [Google Scholar]
  • Gaspar, M.J., Velasco, T., Feito, I., Alía, R., Majada, J., 2013. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: A comparison of induced osmotic stress and field testing. PLoS ONE 8(11). doi: 10.1371/journal.pone.0079094. [Google Scholar]
  • Guerra, S., 2011. Flora e habitats da zona costeira da Mata Nacional de Leiria. Aveiro. Available at: https://ria.ua.pt/bitstream/10773/8585/1/248276.pdf. [Google Scholar]
  • Hernández-Serrano, A., Verdú, M., González-Martínez, S.C., Pausas, J.G., 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100(12): 2349–2356. doi: 10.3732/ajb.1300182. [CrossRef] [Google Scholar]
  • IPMA, 2017. Boletim Climático Anual Portugal Continental 2017. [Google Scholar]
  • IPMA, 2020. Clima Normais. [Google Scholar]
  • Kattge, J., Bönisch, G., Díaz, S. et al., 2020. TRY plant trait database - enhanced coverage and open access. Global Change Biology 26(1): 119–188. doi: 10.1111/gcb.14904. [CrossRef] [Google Scholar]
  • Linkies, A., Graeber, K., Knight, C., Leubner-Metzger, G., 2010. The evolution of seeds. New Phytologist 186(4): 817–831. doi: 10.1111/j.1469-8137.2010.03249.x. [Google Scholar]
  • Madrigal, J., Hernando, C., Guijarro, M., Vega, J.A., Fontúrbel, T., Pérez-Gorostiago, P., 2010. Smouldering fire-induced changes in a Mediterranean soil SE Spain: Effects on germination, survival and morphological traits of 3-year-old Pinus pinaster Ait. Plant Ecol 208(2): 279–292. doi: 10.1007/s11258-009-9705-1. [Google Scholar]
  • Maia, P., Pausas, J.G., Vasques, A., Keizer, J.J., 2012. Fire severity as a key factor in post-fire regeneration of Pinus pinaster Ait. in Central Portugal, Ann For Sci, 69(4): 489–498. doi: 10.1007/s13595-012-0203-6. [CrossRef] [Google Scholar]
  • Maia, P., Keizer, J., Vasques, A., Abrantes, N., Roxo, L., Fernandes, P., Ferreira, A., Moreira, F., 2014. Post-fire plant diversity and abundance in pine and eucalypt stands in Portugal: Effects of biogeography, topography, forest type and post-fire management. Forest Ecol Manag 334: 154–162. doi: 10.1016/j.foreco.2014.08.030. [CrossRef] [Google Scholar]
  • Marques, P., 2010. Os Solos da Mata Nacional de Leiria: características e classificação. Instituto Superior de Agronomia. Available at: http://hdl.handle.net/10400.5/2461. [Google Scholar]
  • Miguel, M., De Sánchez-Gómez, D., Cervera, M.T., Aranda, I., 2012. Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought. Tree Physiol 32(1): 94–103. doi: 10.1093/treephys/tpr122. [Google Scholar]
  • Oliveira, M., 2014. Determinantes do Desenvolvimento do Pinhal Bravo em Áreas Dunares Dunas de Mira. Coimbra. Available at: http://hdl.handle.net/10316/23729. [Google Scholar]
  • Pausas, J.G., Keeley, J. E., 2009. A burning story: The role of fire in the history of life. BioScience 59(7): 593–601. doi: 10.1525/bio.2009.59.7.10. [CrossRef] [Google Scholar]
  • Pausas, J.G., Bladé, C., Valdecantos, A., Seva, J.P., Fuentes, D., Alloza, J.A., Vilagrosa, A., Bautista, S., Cortina, J., Vallejo, R., 2004. Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice - A review. Plant Ecol 171(1/2): 209–220. doi: 10.1023/B:VEGE.0000029381.63336.20. [Google Scholar]
  • Pausas, J.G., Llovet, J., Rodrigo, A., Vallejo, R., 2008. Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildland Fire. 17(6): 713–723. doi: 10.1071/WF07151. [CrossRef] [Google Scholar]
  • Proença, V., Pereira, H.M., Vicente, L., 2010. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation. Acta Oecol 36(6): 626–633. doi: 10.1016/j.actao.2010.09.008. [CrossRef] [Google Scholar]
  • Reyes, O., Casal, M., 2001. The influence of seed age on germinative response to the effects of fire in Pinus pinaster, Pinus radiata and Eucalyptus globulus. Ann For Sci 58(4): 439–447. doi: 10.1051/forest:2001137. [CrossRef] [EDP Sciences] [Google Scholar]
  • Reyes, O., Casal, M., 2004. Effects of forest fire ash on germination and early growth of four pinus species. Plant Ecol 175(1): 81–89. doi: 10.1023/B:VEGE.0000048089.25497.0c. [Google Scholar]
  • Rodrigues, D., Maia, P., Corticeiro, S., 2022. From seed to sapling- effects of plant community, climate and fire occurrence in the recruitment and establishment of Pinus pinaster Ait. in central Portugal. For Sys 31(3), eSC06. doi: 10.5424/fs/2022313-19351. [CrossRef] [Google Scholar]
  • Royo, A., Gil, L., Pardos, J., 2001. Effect of water stress conditioning on morphology, physiology and field performance of Pinus halepensis Mill. Seedlings. New Forests 21: 127–140. doi: 10.1023/A:1011892732084. [Google Scholar]
  • Simón, B.F. De Sanz, M., Cervera, M.T., Pinto, E., Aranda, I., Cadahía, E., 2017. Leaf metabolic response to water deficit in Pinus pinaster Ait. relies upon ontogeny and genotype. Environ Exp Bot 140: 41–55. doi: 10.1016/j.envexpbot.2017.05.017. [CrossRef] [Google Scholar]
  • Suárez-Vidal, E., Sampedro, L., Zas, R., 2017. Is the benefit of larger seed provisioning on seedling performance greater under abiotic stress? Environ Exp Bot 134: 45–53. doi: 10.1016/j.envexpbot.2016.11.001. [CrossRef] [Google Scholar]
  • Tapias, R., Gil, L., Fuentes-Utrilla, P., Pardos, J.A., 2001. Canopy seed banks in Mediterranean pines of southeastern Spain: A comparison between Pinus halepensis Mill., P. pinaster Ait., P. nigra Arn. and P. pinea L. J Ecol 89(4): 629–638. doi: 10.1046/j.1365-2745.2001.00575.x. [CrossRef] [Google Scholar]
  • Tapias, R., Climent, J., Pardos, J.A., Gil, L., 2004. Life histories of Mediterranean pines. Plant Ecol 171(1/2): 53–68. doi: 10.1023/B:VEGE.0000029383.72609.f0. [Google Scholar]
  • Timmer, V. R., Armstrong, G., 1989. Growth and nutrition of containerized Pinus Resinosa seedlings at varying moisture regimes. New Forest, 3(2): 171–180. doi: 10.1007/BF00021580. [Google Scholar]
  • Valbuena, L., Taboada, A., Tárrega, R., Rosa, A., De La Calvo, L., 2019. Germination response of woody species to laboratory-simulated fire severity and airborne nitrogen deposition: a post-fire recovery strategy perspective. Plant Ecol 220(11): 1057–1069. doi: 10.1007/s11258-019-00974-5. [Google Scholar]
  • Valente, S., Coelho, C., Ribeiro, C., Marsh, G., 2015. Sustainable Forest Management in Portugal: Transition from Global Policies to Local Participatory Strategies. Int For Rev 17(3): 368. doi: 10.1505/146554815815982620. [Google Scholar]
  • Viñas, R., Caudullo, G., Oliveira, S., De Rigo, D., 2016. Pinus pinaster in Europe: distribution, habitat, usage and threats. In San-Miguel-Ayanz, J., De Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.) European Atlas of Forest Tree Species. Publ. Off. EU., Luxembourg, pp. 128–129. [Google Scholar]
  • Wahid, N., Bounoua, L., 2013. The relationship between seed weight, germination and biochemical reserves of maritime pine Pinus pinaster Ait. in Morocco. New Forests 44(3) ; 385–397. doi: 10.1007/s11056-012-9348-2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.