Open Access
Issue |
Silva Lusitana
Volume 29, Number 2, 2021
|
|
---|---|---|
Page(s) | 101 - 114 | |
DOI | https://doi.org/10.1051/silu/20212902101 | |
Published online | 05 April 2022 |
- Abdollahzadeh, J., Mohammadi Goltapeh, E., Javadi, A., Shams-Bakhsh, M., Zare, R., Phillips, A.J., 2009. Barriopsis iraniana and Phaeobotryon cupressi: two new species of the Botryosphaeriaceae from trees in Iran. Persoonia 23: 1–8. https://doi.org/10.3767/003158509X467552 [CrossRef] [Google Scholar]
- Aćimović, S.G., Rooney-Latham, S., Grosman, D.M., Doccola, J.J., 2017. Neofusicoccum australe, N. luteum, N. mediterraneum and N. parvum are new blight and canker pathogens of Coast Redwood (Sequoia sempervirens) in California. [Google Scholar]
- Adesemoye, A.O., Mayorquin, J.S., Eskalen, A., 2013. Neofusicoccum luteum as a pathogen on Tejocote (Crataegus mexicana). Phytopathologia Mediterranea 52(1): 123–129. https://doi.org/129.10.14601/Phytopathol_Mediterr-11244 [Google Scholar]
- Al-Snafi, A.E., 2016. Medical importance of Cupressus sempervirens - A review. IOSR Journal of Pharmacy 6(6): 66–76. [Google Scholar]
- Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., Lipman, D., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402. [CrossRef] [Google Scholar]
- Alves, A., Barradas, C., Phillips, A.J.L., Correia, A., 2013. Diversity of Botryosphaeriaceae species associated with conifers in Portugal. European Journal of Plant Pathology 135(4): 791–804. https://doi.org/10.1007/s10658-012-0122-2 [CrossRef] [Google Scholar]
- Amponsah, N.T., Jones, E.E., Ridgway, H.J., Jaspers M.V., 2014. Factors affecting Neofusicoccum luteum infection and disease progression in grapevines. Australasian Plant Pathol. 43: 547–556. https://doi.org/10.1007/s13313-014-0294-7 [CrossRef] [Google Scholar]
- Bagnoli, F., Vendramin, G. G., Buonamici, A., Doulis, A. G., González-Martínez, S. C., La Porta, N., Magri, D., Raddi, P., Sebastiani, F., Fineschi, S., 2009. Is Cupressus sempervirens native in Italy? An answer from genetic and palaeobotanical data. Molecular Ecology 18(10): 2276–2286. https://doi.org/10.1111/j.1365-294X.2009.04182.x [CrossRef] [Google Scholar]
- Barradas, C., Correia, A., Alves, A., 2013. First report of Neofusicoccum austral and N. luteum associated with canker and dieback of Quercus robur in Portugal. Plant Disease 97(4): 560–560. [CrossRef] [Google Scholar]
- Barradas, C., Phillips, A., Correia, A., Diogo, E., Bragança, H., Alves, A., 2016. Diversity and potential impact of Botryosphaeriaceae species associated with Eucalyptus globulus plantations in Portugal. European Journal of Plant Pathology 146: 245–257. [CrossRef] [Google Scholar]
- Bonthond, G., Sandoval-Denis, M., Groenewald, J.Z., Crous, P.W., 2018. Seiridium (Sporocadaceae): an important genus of plant pathogenic fungi. Persoonia 40: 96–118. [CrossRef] [Google Scholar]
- Caetano, M.F.F., 1980. A serious disease of Cupressaceae in Portugal. Agros 63(3): 5–9. [Google Scholar]
- Danti, R., Della Rocca, G., Wahidi, F.E., 2009. Seiridium cardinale newly reported on Cupressus sempervirens in Morocco. Plant Pathology 58(6): 1174–1174. doi:10.1111/j.1365-3059.2009.02107.x [CrossRef] [Google Scholar]
- Gardes, M., Bruns, T., 1993. ITS primers with enhanced specify for Basidiomycetes: application to identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118 [CrossRef] [Google Scholar]
- Glass, N.L., Donaldson, G., 1995. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. [CrossRef] [Google Scholar]
- Golzar, H., Burgess, T.I., 2011. Neofusicoccum parvum, a causal agent associated with cankers and decline of Norfolk Island pine in Australia. Australasian Plant Pathology 40(5): 484–489. https://doi.org/10.1007/s13313-011-0068-4 [CrossRef] [Google Scholar]
- Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27(2): 221–224. https://doi.org/10.1093/molbev/msp259 [CrossRef] [Google Scholar]
- Graniti, A., 1986. Seiridium cardinale and other cypress cankers. EPPO Bulletin 16: 479–486. https://doi.org/10.1111/j.1365-2338.1986.tb00309.x [CrossRef] [Google Scholar]
- Graniti, A., 1998. Cypress canker: a pandemic in progress. Annual Review of Phytopathology 36: 91–114. [CrossRef] [Google Scholar]
- Iturritxa, E., Slippers, B., Mesanza, N., Wingfield, M.J., 2011. First report of Neofusicoccum parvum causing canker and die-back of Eucalyptus in Spain. Australasian Plant Disease Notes 6(1): 57–59. https://doi.org/10.1007/s13314-011-0019-5 [CrossRef] [Google Scholar]
- Katoh, K., Standley, D.M., 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010 [CrossRef] [Google Scholar]
- Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096 [CrossRef] [PubMed] [Google Scholar]
- Linaldeddu, B.T., Maddau, L., Franceschini, A., Alves, A., Phillips, A.J.L., 2016. Botryosphaeriaceae species associated with lentisk dieback in Italy and description of Diplodia insularis sp. nov. Mycosphere 7(7): 962–977. https://doi.org/10.5943/mycosphere/si/1b/8 [CrossRef] [Google Scholar]
- Lopes, A., Barradas, C., Phillips, A.J.L., Alves, A., 2016. Diversity and phylogeny of Neofusicoccum species occurring in forest and urban environments in Portugal. Mycosphere 7(7): 906–920. https://doi.org/10.5943/mycosphere/si/1b/10 [CrossRef] [Google Scholar]
- Mahamedi, A.E., Phillips, A.J.L., Lopes, A., Djellid, Y., Arkam, M., Eichmeier, A., Zitouni, A., Alves, A., Berraf-Tebbal, A., 2020. Diversity, distribution and host association of Botryosphaeriaceae species causing oak decline across different forest ecosystems in Algeria. Eur J Plant Pathol 158: 745–765. https://doi.org/10.1007/s10658-020-02116-4 [CrossRef] [Google Scholar]
- Massonnet, M., Figueroa-Balderas, R., Galarneau, E., Miki, S., Lawrence, D. P., Sun, Q., Wallis, C.M., Baumgartner, K., Cantu, D., 2017. Neofusicoccum parvum Colonization of the Grapevine Woody Stem Triggers Asynchronous Host Responses at the Site of Infection and in the Leaves. Frontiers in plant science 8: 1117. https://doi.org/10.3389/fpls.2017.01117 [Google Scholar]
- Mohammadi, H., Kazemi, S., Farahmand, H., 2014. Phaeoacremonium and Botryosphaeriaceae species associated with cypress (Cupressus sempervirens L.) decline in Kerman province (Iran). Phytopathologia Mediterranea 53: 27–39. https://doi.org/10.14601/Phytopathol_Mediterr-12717 [Google Scholar]
- Okonechnikov, K., Golosova, O., Fursov, M., & the UGENE team, 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8): 1166–1167. https://doi.org/10.1093/bioinformatics/bts091 [CrossRef] [Google Scholar]
- Pavlic, D., Slippers, B., Coutinho, T. A., Wingfield, M.J., 2007. Botryosphaeriaceae occurring on native Syzygium cordatum in South Africa and their potential threat to Eucalyptus. Plant Pathology 56: 624–636. [CrossRef] [Google Scholar]
- Phillips, A.J.L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M.J., Groenewald, J.Z., Crous, P., 2013. The Botryosphaeriaceae: Genera and species known from culture. Studies in mycology 76: 51–167. 10.3114/sim0021. [CrossRef] [Google Scholar]
- White, T., Burns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (M.A. Innis, Ed.), Academic Press, New York, USA, pp. 315–322. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.