Open Access
Issue
Silva Lusitana
Volume 28, Number 1, 2020
Page(s) 45 - 70
DOI https://doi.org/10.1051/silu/20202801045
Published online 11 September 2020
  • Akkartal, A., Turudu, O., Erbek, F.S., 2004. Analysis of changes in vegetation biomass using multisensor satellite data Proceedings of the ISPRS Congress-Youth Forum Archives XXXV Part B8: 181–185. [Google Scholar]
  • Alexandre, C., Gomes, A.A., 2000. Relatório da Componente de Solos do Projeto PAMAF 4069 - Tipificação dos montados de sobro e azinho nos concelhos de Avis, Mora e Arraiolos e dos sistemas de exploração associados. Identificação dos principais problemas e medidas para a sua gestão integrada e conservação. UE, EFN, Évora, Lisboa, 11 pp + Anexos. [Google Scholar]
  • Alexandre, C., Gomes, A.A., Rosado, M.J., Mesquita, S., Cadima, I.S.P., Rego, F.C., 2002. Caracterização preliminar dos solos ocupados com montados de sobro e azinho nos concelhos de Avis, Mora e Arraiolos (Preliminary characterization of soils occupied with cork oak and holm oak stands in Avis, Mora and Arraiolos region), Revista de Ciências Agrárias, Edição Especial da SPCS, Vol. XXV, n°s 3 e 4: 271–279. [Google Scholar]
  • Baret, F., Guyot, G., 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment 35: 161–173. [CrossRef] [Google Scholar]
  • Baret, F., Guyot, G., Major, D., 1989. TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects on LAI and APAR Estimation, Proceedings of the 1989 International Geoscience and Remote Sensing Symposium (IGARSS’89) and the Twelfth Canadian Symposium on Remote Sensing, Vancouver, Canada, pp. 1355–1358. [Google Scholar]
  • Baret, F., Jaquemoud, S., Hanocq, J.F., 1993. About the soil line concept in remote sensing. Advances in Spatial Research 13(5): 281–284. [Google Scholar]
  • Benedetti, R., Rossini, P., Taddei, R., 1994. Vegetation classification in the Middle Mediterranean area by satellite data. International Journal of Remote Sensing 15(3): 583–596. [CrossRef] [Google Scholar]
  • Cadima, I.S.P., 2001. Relatório Final da Componente ‘Povoamento Florestal: Dendrometria e Sanidade’. In Relatório Final do projeto PAMAF 4069 - Tipificação dos montados de sobro e azinho nos concelhos de Avis, Mora e Arraiolos e dos sistemas de exploração associados. Identificação dos principais problemas e medidas para a sua gestão integrada e conservação, Vol. III, EFN, Lisboa pp. 78–181. [Google Scholar]
  • Cadima, I.S.P., 2008. Cartografia dos montados a partir de imagens multiespectrais de muito alta resolução espacial: Exploração de uma metodologia. In Trabalho de Tese apresentado como dissertação original para efeitos de acesso à categoria de Investigador Auxiliar, INIAP, EFN, Oeiras, 225 pp. [Google Scholar]
  • Capelo, J., Mesquita, S., 2001. Relatório Final da Componente ‘Vegetação Paisagem Vegetal e Clima’. In Relatório Final do projeto PAMAF 4069 - Tipificação dos montados de sobro e azinho nos concelhos de Avis, Mora e Arraiolos e dos sistemas de exploração associados. Identificação dos principais problemas e medidas para a sua gestão integrada e conservação, Vol. III. EFN, Lisboa, pp. 5–77. [Google Scholar]
  • Chen, J., 1996. Evaluation of Vegetation Indices and modified simple ratio for boreal applications. Canadian Journal of Remote Sensing 22: 229–242. [CrossRef] [Google Scholar]
  • Chen, X., Vierling, L., 2006. Spectral mixture analysis of hyperspectral data acquired using a tethered balloon. Remote Sensing of Environment 103: 338–350. [CrossRef] [Google Scholar]
  • Davis, J.C., 1986. Statistics and Data Analysis in Geology (second edition) John Wiley and Sons, New York, 646pp. [Google Scholar]
  • DGRF. 2007. National Forest Strategy. Portugal. Government Order No 114/2006. DGRF, Lisboa. p. 109. [Google Scholar]
  • Elvidge, C.D., Chen, Z., 1995. Comparison of Broad-Band and Narrow-band Red and Near-Infrared Vegetation Indices. Remote Sensing of Environment 54: 38–48. [CrossRef] [Google Scholar]
  • F.A.O., 1998. World Reference Base for Soil Resources. Food and Agriculture Organization of the United Nations. World Soil Resources Report N°84, Roma. [Google Scholar]
  • Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
  • Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartley, A.E., Joel, G., Penuelas, J., Valentini, R., 1995. Relationships between NDVI, Canopy structure and photosynthesis in three Californian vegetation types. Ecological Applications 5(1): 28–41. [CrossRef] [Google Scholar]
  • Gilabert, M.A., González-Piqueras, J., Garcia-Haro, F.J., Meliá, J., 2002. A generalized soil-adjusted vegetation index. Remote Sensing of the Environment 82: 303–310. [CrossRef] [Google Scholar]
  • Glenn, E.P., Huete, A.R., Nagler, P.L., Nelson, S.G., 2008. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 8: 2136–2160. [CrossRef] [Google Scholar]
  • Goel, N.S., Qin, W., 1994. Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation. Remote Sensing Reviews, 10(4): 309–347. [CrossRef] [Google Scholar]
  • Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment 90: 337–352. [CrossRef] [Google Scholar]
  • Hawkins, J.M., Weston, J., Swannell, J.C.(compilers), 1991. The Oxford Study Dictionary, Oxford University Press, Oxford. [Google Scholar]
  • Huete, A.R., Post, D.F., Jackson, R.D., 1984. Soil Spectral Effects on 4-Space Vegetation Discrimination. Remote Sensing of Environment 15: 155–165. [CrossRef] [Google Scholar]
  • Huete, A.R., Jackson, R.D., Post, D.F., 1985. Spectral Response of a Plant Canopy with Different Soil backgrounds. Remote Sensing of Environment 17: 37–53. [CrossRef] [Google Scholar]
  • Huete, A.R., Jackson, R.D., 1987. Suitability of Spectral Indices for Evaluating Vegetation Characteristics on Arid Rangelands. Remote Sensing of Environment 23: 213–232. [CrossRef] [Google Scholar]
  • Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of the Environment 25: 295–309. [CrossRef] [Google Scholar]
  • Huete, A.R., 1988. Soil and atmosphere Influences on the Spectra of Partial Canopies. Remote Sensing of Environment 25: 89–105. [CrossRef] [Google Scholar]
  • Huete, A.R., Didan, A.K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83: 195–213. [Google Scholar]
  • Huete, A.R., 2012. Vegetation Indices, Remote Sensing and Forest Monitoring. Geography Compass 6(9): 512–532. [Google Scholar]
  • Jackson R.D., Huete, A.R., 1991. Interpreting vegetation indices. Preventive Veterinary Medicine 11: 185–200. [CrossRef] [Google Scholar]
  • Jin, C., Jia, Y., Gao, Z., Wei, H., Li, X., 2017. Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China. PLoS ONE 12(12): e0189292. https://doi.org/10.1371/journal.pone.0189292. [CrossRef] [Google Scholar]
  • Jiang, Z., Huete, A.R., Chen, J., Chen, Y., Li, J., Yan, G., Zhang, X.. 2006, Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment 101: 366–378. [CrossRef] [Google Scholar]
  • Jiang, Z., Huete, A.R., Li, J., Qi, J., 2007. Interpretation of the modified soil-adjusted vegetation index in red-NIR reflectance space. Journal of Applied Remote Sensing 1(1): 013503. https://doi.org/10.1117/1.2709702. [CrossRef] [Google Scholar]
  • Jiang, Z., Huete, A.R., Didan, K., Miura, T., 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment 112: 3833–3845. [CrossRef] [Google Scholar]
  • Jin, H., Eklundh, L., 2014. A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment 152: 512–525. [CrossRef] [Google Scholar]
  • Jordan, C.F., 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology 50: 663–666. [CrossRef] [Google Scholar]
  • Koppen, W., Geiger, R., 1928. Klimate der Erde. Gotha : Verlag Justus Perthes. Wall-map 150 cm x 200 cm. [Google Scholar]
  • Kuemmerle, T., Roder, A., Hill, J., 2006. Separating grassland and shrub vegetation by multidate pixel-adaptive spectral mixture analysis. International Journal of Remote Sensing 27(15): 3251–3271. [CrossRef] [Google Scholar]
  • Lawrence, R.L., Ripple, W.J., 1998. Comparisons among Vegetation Indices and Bandwise Regression in a Highly Disturbed, Heterogeneous Landscape: Mount St Helens, Washington. Remote Sensing of Environment 64: 91–102. [CrossRef] [Google Scholar]
  • Liang, S.. 2004, Quantitative Remote Sensing of Land Surfaces. Wiley Series in Remote Sensing. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 534pp. [Google Scholar]
  • Lillesand, T.M., Kiefer, R.W., 1979. Remote Sensing and Image Interpretation. John Wiley and Sons, New York, pp. 612. [Google Scholar]
  • Lucas, R.M., Bunting, P.J., 2006. The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data. Remote Sensing of Environment 101(2): 230–248. [CrossRef] [Google Scholar]
  • Ludwig, J.A., Reynolds, J.F., 1988. Statistical Ecology. A Primer on Methods and Computing. John Wiley and Sons, New York, pp. 337. [Google Scholar]
  • Myneni, R.B., Asrar, G., 1994. Atmospheric effects and spectral vegetation indices. Remote Sensing of Environment 47(3): 390–402. [CrossRef] [Google Scholar]
  • Nagler, P.L., Daughtry, C.S.T., Goward, S.N., 2000. Plant Litter and Soil Reflectance. Remote Sensing of Environment 71: 207–215. [CrossRef] [Google Scholar]
  • Okin, G.S., 2007. Relative spectral mixture analysis - A multitemporal index of total vegetation cover. Remote Sensing of Environment 106: 46–479. [Google Scholar]
  • Pearson, R.L., Miller, L.D., 1972. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grassland, Colorado. 8th international symposium on remote sensing of environment, pp. 1357–1381. [Google Scholar]
  • Perry, C.R., Lautenschlager, L.F., 1984. Functional equivalence of spectral vegetation indices. Remote Sensing of Environment 14: 169–182. [CrossRef] [Google Scholar]
  • Qi, J., Chebouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A Modified Soil Adjusted Vegetation Index. Remote Sensing of Environment 48: 119–126. [CrossRef] [Google Scholar]
  • Richardson, A.J., Wiegand, C.L., 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing 43: 1541–1552. [Google Scholar]
  • Rondeaux, G., Steven, M.D., Baret, F., 1996. Optimization of Soil-Adjusted Vegetation Indices. Remote Sensing of Environment 55(2): 95–107. [CrossRef] [Google Scholar]
  • Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC, Type III, Final report, Greenbelt MD, 371pp. [Google Scholar]
  • Richards, J.A., Jia, X., 1999. Remote Sensing Digital Image Analysis. An Introduction. 3rd Revised and Enlarged Edition.Springer-Verlag, Berlin, Heidelberg, Germany. 363pp. [Google Scholar]
  • Silleos, N.G., Alexandridis, T.K., Gitas, I.Z., Perakis, K., 2006. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the last 30 Years. Geocarto International 21(4): 21–27. [Google Scholar]
  • Somers, B., Cools, K., Delalieux, S., Stuckens, J., van der Zande, D., Verstraeten, W.W., Coppin, P., 2009. Nonlinear Hyperspectral Mixture Analysis for tree cover estimates in orchards. Remote Sensing of Environment 113: 1183–1193. [CrossRef] [Google Scholar]
  • Steel, R.G.D., Torrie, J.H., 1980. Principles and Procedures of Statistics. A Biometrical Approach (second edition),” McGraw-Hill Book Company, New York, 672pp. [Google Scholar]
  • Strand, E.K., Vierling, L.A., Smith, A.M.S., Bunting, S.C., 2008. Net changes in aboveground woody carbon stock in western juniper woodlands, 1946–1998. Journal of Geophysical Research Biogeosciences 113: G01013. doi:10.1029/2007JG000544. [Google Scholar]
  • Rougean, J.L., Breon, F.M., 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment 51: 375–384. [CrossRef] [Google Scholar]
  • Teillet, P.M., Staenz, K., Williams, D.J., 1997. Effects of Spectral, Spatial, and Radiometric Characteristics on Remote Sensing Vegetation Indices of Forested Regions. Remote Sensing of Environment 61: 139–149. [CrossRef] [Google Scholar]
  • Tucker, C.J., 1979. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of the Environment 8: 127–150. [CrossRef] [Google Scholar]
  • Verstraete, M.M., Pinty, B., 1996. Designing optimal spectral indices for remote sensing applications. IEEE Transactions on Geoscience and Remote Sensing 34(5): 1254–1264. [CrossRef] [Google Scholar]
  • Wang, J., Zhao, Y., Li, C., Yu, L., Liu, D., Gong, P., 2015. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution. ISPRS Journal of Photogrammetry and Remote Sensing 103: 38–47. [CrossRef] [Google Scholar]
  • Wu, W., 2014. The Generalized Difference Vegetation Index (GDVI) for Dryland Characterization. Remote Sensing 6: 211–1233. [Google Scholar]
  • Yoshioka, H., Miura, T., Huete, A.R., Ganapol, B.D., 2000. Analysis of Vegetation Isolines in Red-NIR Reflectance Space. Remote Sensing of Environment 74: 313–326. [CrossRef] [Google Scholar]
  • Xie, Y., Sha, Z., Yu, M., 2008. Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology 1: 9–23. [CrossRef] [Google Scholar]
  • Xue, J., Su, B., 2017. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors vol. 2017, Article ID 1–1, 17 pages. https://doi.org/10.1155/2017/1353691. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.